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0. Executive Summary
The application of computational techniques to manufacturing and to the

management of manufacturing enterprises is both broad and diverse. The effectiveness of
automating physical manufacturing processes sparked optimism that automating the less
tangible management processes such as planning, scheduling and control could also be
effective. The hope was and is to use computational techniques to reduce the cost of
managing complex activities and to increase responsiveness to both scheduled and non-
scheduled events. This latter type of automation, though, has proven much more difficult
since it deals with the complexities of human mental activity as opposed to the operation
of physical machines. Part of the difficulty relates to the computer languages which are
used to represent management situations as well as the inferences which must be made
regarding those situations. Formal logics of different kinds are usually the basis for
computer languages which can handle inference. However, most of these languages deal
with very constrained types of inference which are inadequate to represent the breadth of
reasoning needed to automate decisions found in manufacturing environments. The goal
of this Phase II SBIR has been to develop a computer language, Logistica, for building
reasoning systems capable of modeling more complex situations than is currently the
case.

Logistica is a computer language which is used as a tool for building inference
systems. It is not based on a particular kind of logic, but allows different kinds of logics
to be defined and used as the basis for reasoning systems. The value of this fact is that the
language is very flexible and may be applied to many different situations. Currently,
Logistica is being applied in two very diverse contexts. First, Logistica is being used as
part of Ontek Corporation's work on PACIS (a Platform for the Automated Construction
of Intelligent Systems). That work is being carried out under the Air Force Manufacturing
Technology (ManTech) Directorate's Integrated Toolkit and Methods contract, Corporate
Data Integration Tools project (ITKM CDIT). Logistica is also deployed into a
manufacturing system being developed by Allied Signal Aerospace at the Department of
Energy's Kansas City plant. In that project, Logistica is being used as a tool for reasoning
about manufacturing actions, feature constraints on product designs, and as a tool for
translating product descriptions between different product description languages. Both
these applications provide real world problems which test Logistica's inference
capabilities. Also, each of the application projects are deriving real benefit from
Logistica. In the case of PACIS, one the fundamental technical requirements supporting
several higher level requirements is met by Logistica. The PACIS project intends to
incorporate Logistica constructs and formalisms into its system platform. At Allied
Signal Logistica was originally purchased to build reasoning systems that would facilitate
understanding and representing the results of mechanical manufacturing actions and
mental actions involved in the design process. Allied Signal subsequently discovered that
Logistica was also a very useful language for implementing translation processes, and for
verifying design constraints and consistency. In fact, they have found Logistica to be so
useful that one development group is considering rewriting substantial parts of their
existing manufacturing system in the Logistica language.

This Phase 11 SBIR represents advanced theoretical work in computational, logic-
based inference, which combined with the two implementations mentioned above,
expand Logistica's scope beyond academic interest to include solutions to previously
intractable real-world manufacturing problems.

1. Introduction
The overall, long-term objective of the work described in this technical report is

to develop and implement a general, self-extensible, knowledge-based reasoning
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technology specifically targeted for use in comprehensive manufacturing and
management operations systems. This technology provides manufacturing and
management operations systems with an automated reasoning mechanism for inferring
the potential consequence of actions, and for planning sequences of manufacturing and
management operations to achieve specific organizational goals. This technology
substantially increases the reasoning ability of current manufacturing and management
operations systems, thus allowin# the simpler decision-making tasks to be automated.
This, in turn, leads to decreases in overall indirect costs to design and manufacturingproducts.

The specific objective of this SBIR Phase II project was to develop multiple
automated deduction systems based on a general knowledge-based reasoning technology
and suitable for use in large management and manufacruring systems. The motivations
for this project are described in Section 2. of this report. The objectives of the project
were carried out by first developing a general reasoning tool called Logistica which
allows a user to easily implement sophisticated deductive reasoning systems, and then by
implementing specific rule systems in Logistica dealing with management and
manufacturing problems. Logistica is a unique very-high-level (VHL) reasoning tool
based on pattern-directed invocation, multiple execution threads and user-definable
control structures. It is described in Section 3. of this report. Our approach to developing
complex reasoning system by abstracting out commonly used features and embedding
them into the Logistica language is discussed in Section 4., along with some of the
lessons which were learned during the development and use of this system.

During the course of this project, Logistica was applied and used by two
companies. First it was used as part of Ontek Corporation's work on PACIS (a Platform
for the Automated Construction of Intelligent Systems). That work is being carried out
under the Air Force Manufacturing Technology (ManTech) Directorate's Integrated
Toolkit and Methods contract, Corporate Data Integration Tools project (ITKM CDIT).
In that project, the Logistica technology is providing a key underlying capability -
pattern-directed invocation - which is being used to help meet several important
technical requirements. Logistica was also deployed into a manufacturing system being
developed by Allied Signal Aerospace at the Department of Energy's Kansas City plant.
In that project, Logistica was used as a tool for reasoning about manufacturing actions,
feature constraints on project designs, and as a tool for translating product descriptions
between different product description languages. This deployment took the form of a sale
to Allied Signal Aerospace of Logistica software, as well as a set of Logistica rules which
implement nonmonotonic reasoning. These applications and deployments of Logistica
technology are discussed in Section 5. of this report. Finally, some conclusions are
discussed in Section 6.

2. Project Motivations

A great deal of effort is currently being expended on developing large
manufacturing and management control systems in order to improve productivity in the
industrial base. These efforts are intended to model many aspects of the design and
manufacture of products, including the representation of those processes, and the use of
the representation for management of those processes. While the representation of such
knowledge, as well as the storage and retrieval of such knowledge, are themselves
significant achievements, such systems would be significantly enhanced by the ability to
automatically determine the important consequences which might follow from analyzing
data reported to the system in the context of the base knowledge represented in the
system. One very important class of consequences which we would like to be able to
determine, are those which follow when an action or event occurs. For example, when the
manufacturing system is told that a red-colored work-in-process part was moved from



one shop floor location to another, it probably should infer that the part is at the new
location. For obvious consequences, this is accomplished by storing a rule or law
describing what happens when something is moved. Unfortunately, many actions, such as
those in a complex environment like a manufacturing enterprise, generally have many
uDobviouI consequences. For example, if a red light had been shining at the first location,
but a green light were shining at the new location, the property that the part appears red-
colored might also have changed as a result of the move. For this reason we cannot, as is
often done in current planning systems, just make an assumption that everything except
the obvious results remain the same. We need to be more precise, i.e., we need to need to
be able to say something like 'everything remains the same unless it contradicts the direct
results of the action or certain qualitative physical laws (such as an object may only
reflect the color of those sources of light for which there is such a source at the given
location)". This problem, of specifically describing what does and does not change is
known as the 'Frame Problem' in artificial intelligence, and is the subject of a growing
body of research [Brown87; Ford & Hayes9O]. Theories and logics for deducing such
unobvious consequences are generally called nonmonotonic reasoning systems.

The basic scientific problem addressed under this SBIR was, therefore, to predict
the unobvious consequences of actions involving manufacturing operations and their
management. Our opportunity to significantly address this problem lies in the fact that we
have developed a scientific theory of such nonmonotonic reasoning mechanisms that
explains the reasoning carried out in almost AlU of these kinds of problems. The theory has
been shown to encompass and generalize almost all other competing theories of such
reasoning in the literature [Brown86a,bc,d,87,90; Brown & Park87,88]. Thus, in order to
actually build computer programs which carry out such reasoning, there was a need to
find a way to develop a technology which would allow a user to quickly implement
sophisticated reasoning process. This would entail experimentally developing a computer
model of the reasoning process, based on our scientific theory of such reasoning. In the
course of this project we developed just such an implementation technology, which we
call Logistica. Logistica also draws on our previous research on automatic deduction
systems. Logistica was then used to develop a comprehensive rule system for
nonmonotonic reasoning about actions, called NONMON. The Logistica system and
NONMON are described in Section 3.

3. Logistica: an Expert System for Building Expert
Systems

Logistica is a lexically-scoped functional programming language used for
implementing deductive reasoning processes. Although at the simplest level Logistica
looks like the Scheme dialect [Abelson85; Rees86] of LISP [McCarthy6O; Church41; and
Steele9%] it differs in that symbols may have any number of definitions instead of always
just one as in Scheme. The reason for this difference is that there are usually many
axiomatic properties of any symbol and thus to represent them in a useful modular
fashion a separate definition is needed to represent each property. For example, one
definition of conjunction might represent the associative law of conjunction, and another
definition might represent the idempotent law of conjunction. In the simple case where no
symbol is defined more than once, Logistica is essentially Scheme. For this reason,
Logistica can be viewed as one possible explication of the thesis that deduction and
computation are similar activities [Hayes73; Kowalski79l. Allowing multiple definitions
of symbols is reminiscent of Prolog's [Colmerauer73; Kowalski74] use of several clauses
beginning with a particular predicate to axiomatize that predicate. The difference is that
Logistica allows multiple definitions of all its symbols, including predicates, functions,
and logical connectives. The consequence of this rather slight conceptual change is quite
significant, in that expressions may have multiple values. Control facilities similar to the
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cut operation of Prolog are included for dealing with multiple values. Because Logistica
enables the specification of arbitrary deductive systems (by representing the properties of
symbols as 'backtrackable rewrite rules' which are associated to the symbols themselves),
it is independent of any specific logic and it provides instead the basic tools for deduction
[Araya9Oa and 90b; Brown86a, 86b, 87, 89, 91a, 91b, and 92; Hundal91; and Park88].

A second important way in which Logistica differs from the Scheme dialect of
LISP is that it allows symbolic expressions to be the results of evaluation. The reason for
this difference is that symbolic expressions involving variables, such as those occurring
in the scope of an existential or universal quantifier, generally do not evaluate to specific
values, but are essentially place holders which may be manipulated by logical inference
operations.

These differences while allowing new and powerful programming metaphors in
themselves, are integrated with the language Scheme, a popular LISP dialect. This
integration gives the programmer a seamless and natural progression of tools, from the
straightforward functional programming approach of Scheme or LISP to the powerful and
highly descriptive expression of alternative symbolic computations afforded by Logistica.
These two major differences from LISP are discussed in more detail below, in sections
3.1 and 3.2, respectively. Some example programs exhibiting the utility of these
additional capabilities found in Logistica are also described. Section 3.3 rounds out this
introduction to Logistica with a brief presentation of its other important features.

3.1 The Multi-Valued Nature of Logistica

The first difference is that symbols may have any number of definitions instead of
always just one as in Scheme. The reason for this difference is that there are usually many
axiomatic properties of any symbol and thus to represent them in a useful modular
fashion a separate definition is needed to represent each property. For example, one
definition of conjunction might represent the associative law of conjunction, and another
definition might represent the idempotent law of conjunction. In the simple case where no
symbol is defined more than once, Logistica is essentially the same as Scheme. For this
reason, Logistica can be viewed as one possible explication of the thesis that deduction
and computation are similar activities. Allowing multiple definitions of symbols is
reminiscent of Prolog's use of several clauses beginning with a particular predicate to
axiomatize that predicate. The difference is that Logistica allows multiple definitions of
all its symbols, including predicates, functions, and logical connectives. Logistica allows
not only single-valued expressions, but also multi-valued and no-valued expressions.
Single-valued expressions evaluate to a single value. For example:

(* 5 8) =ý 40

No-valued expressions evaluate to no values. Such a result is indicated in the meta
language as failure. For example:

#fail • failure

Multi-valued expressions are created by defining additional values. They evaluate to
more than one value. For example:

(let((z 1))(define z 2)(define z 3)x) = 3
2



Multiple definitions are specified in a combination of two ways, either by using multiple
define statements (as shown above) or by pattern matching, in more than one way, the
formals of a closure being applied, as shown below:

(let(((list ...a a ...b) '(1 2 3))z) x 1
•2
•3

In this last example, ... a and ... b are segment variables which match zero or more
expressions in the argument '(1 2 3), or rather the list, (list 1 2 3). Once multiple values
are produced, computation may proceed on the individual values in a generic manner by
merely applying operations to the entire expression:

(+ 10(let(((list ...a x .. b) '(1 2 3))x)) • 11
S12
S13

The different values may then be joined together as a single value:

(stream->list
(join(+ 1O(let(((1ist ...a z ...b) '(1 2 3))z)))) 1 '(11 12 13)

The join special form returns a stream of all the values of its argument expression. The
procedure stream->ist creates a list of the values from that stream. The operations of
generating multiple values, applying operations to multiple values, and then joining those
results together over and over again is an enduring metaphor in Logistica programming.

Here is a simple example program using multiple values to solve the 'eight
queens' puzzle. The eight queens puzzle asks how to place eight queens on a chessboard
so that no queen may be captured by any other queen, i.e., where no two queens are on
the same row, column, or diagonal. One way to solve this problem is to work down the
board, row by row, placing a queen in some column position in each row such that no
previous queen has been placed in that same column and or along any diagonal from that
position. We think of the queens' positions on a chessboard as being represented by a list
of numbers where the last number represents the column position of the queen placed on
the last row, and the second to last number represents the column position of the queen
placed on the second to last row, and so forth. Thus '(4 2 7 3 6 8 s 1) represents the
placement of 8 queens with the row 1 queen in column 4, the row 2 queen in column 2,
the row 3 queen in column 7, and so forth. Likewise ' (8 s 1) represents the partial
solution of placing the row 6 queen in column 8, the row 7 queen in column 5 and the
row 8 queen in column 1. Using this representation, the following program solves this
puzzle:

(define (queens(list ...s col ...t)
(!and b(!not(list ...p

('test c(=(+(length(list ...p))1)
(abs(- col c))))...q))))

(queens(list ...s ...t) (cons col b)))
(define! (queens ' ()b) b)

The first definition of queens takes the list of remaining column positions, and a
partial solution consisting of a list of column positions of queens already placed on the
latter rows of the board. This procedure checks - for each column in the list of columns
- whether some queen already placed on the board can capture a queen at that position
through some diagonal. If so, it fails, but if not, the procedure recursively calls itself. The
call is made using the list of columns with the currently chosen column eliminated and
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the new solution board consisting of adding the newly chosen column position to the next
early row position of the old partial solution. The second definition of queens simply
returns the resulting solution when all the queens have been placed.

Calling the queens procedure with the initial list of columns and an empty initial
board produces 92 solutions, of which the first few are shown below:

(qwuens '(1 2 3 4 5 6 7 8)')) '(4 2 7 3 6 8 5 1)
1 (5 7 1 3 8 6 4 2)

S'(5 2 4 7 3 8 6 1)
1'(6 4 2 8 5 7 1 3)
10 5 2 8 6 4 7 1)
1 '(4 6 8 3 1 7 5 2)

= '(3 6 4 2 8 5 7 1)
1 '(6 3 7 2 8 5 1 4)

Sand so forth

If only one solution is desired we call:

(head(join(queens '(1 2 3 4 5 6 7 8)'())))
S1(4 2 7 3 6 8 5 1)

3.2 The Symbolic Nature of Logistica

The second difference is that when Logistica evaluates an expression it returns the
normal form of that expression rather than the meaning of that expression. The reason for
this difference is that Logistica always has a representation for its expressions and their
normal forms, whereas it may not have a representation of the meanings of expressions if
those meanings refer to things outside of Logistica. For example, the expression 7c refers
to a real number which is not itself an expression of Logistica, just as the expression
Colonel'William'Barret Travis refers to the commander of the Alamo who is not himself
an expression in Logistica. Thus, unlike traditional programming languages such as
Scheme whose expressions are restricted to those expressions whose meanings are
themselves expressions in some datum language, Logistica makes no such restrictions
whatsoever. In the simple case, where the expression being evaluated is the name of an
expression in some datum language, Logistica operates just like Scheme, except that the
final output is quoted. The symbolic nature of Logistica is well exemplified by the
following automatic theorem prover for the propositional logic, which proves theorems in
the propositional logic by symbolically rewriting them into conjunctive normal form and
then testing each disjunction for the occurrence of a proposition and its negation:

(define $and '$and)
(define $or '$or)
(define $not '$not)
(define! (Sor) #r)
(define! ($or ...a($not z) ...b x ...c) #t)
(define! ($or ...a z ... ($not x)...c) #t)
(define! (so: ...a #t .. b)#t)
(define:($oo ...a (Sor ..b)...c) ($or ...a ..b ...c))
(define! (So: ...a ($and x .. b)...c)

(Sand($or ...a z ...c) (Sor ...a(Sand .b)...c)))
(define! (Sand) #t)
(define! (Sand ...a #t ...b) (Sand ...a ..b))
(define! ($not($o: ...(!do(i 1 n)(!fef i x))))

(Sand ...(!do(i 1 n)($not(!ref i x)))))

-- -----



(dfinz! ($not(Sand ... (do(i 1 n)(!ref i z))))
(Sor ... (. do(U 1 n) (not(:=ef SL x)))))

(define! ($not($not x)) z)
(define! (impliaes z y) ($or($not z)y))
(define! (1ff z y) ($and(implies z y)(implies y z)))

The firs! three definitions define sand, $or, and Snot to be symbolic. Because of
the cuts on all the succeeding definitions, the effect of these rules is to return these
symbolic values only if no other definition is applicable. The next six definitions define
properties of $or, namely that $or of no arguments is #f, left and right inverses, the zero
law of $or, associativity, and distribution $or over Sand. The next two definitions define
properties of Sand, namely that $and of no arguments is #t and the identity law. The
next three definitions are deMorgans laws and the law of double negation. The last two
definitions are the definitions of implies and iff.

In this program each of the variables: Sand, $or and Snot is used both as a
procedure and as a symbolic data structure to which other definitions are applied. For
example, the $or distribution law uses Sand as a data structure, the $or associativity law
uses $or itself as a data structure, and the $or inverse laws uses Snot as a data structure.
Since these variables are also used as procedures, they can be said to be used as both
procedures ad data structures. Being able to treat variables as both data structures and
procedures is an, important capability for describing the semantics of complex domains
such as manufacturing enterprises. There is a parallel trend in computing systems towards
a merging of data structures and procedures.

This program can be used to prove theorems in propositional logic when the
variables in the theorem are given symbolic values. For example the variables a, b, c may
be defined to be symbolic values as follows:

(define a .. a)
(define b b)
(define c .c)

Evaluating the following theorem then results in #t:

(implies($and(implies a b)(implies b c)((implies c a)
($o: a b c))

(Sand a b c))) # it

3.3 Overview of Logistica

A Logistica program denotes a function which maps a tuple of streams into a
stream. A stream (or 'lazy list') is either empty or an ordered pair consisting of a 'head'
and 'tail'. The head is a data object. The tail is either a stream or a 'promise'. A promise is
a procedure that when executed produces the stream representing [the rest of] the original
stream. The fact that a Logistica program is a function from a tuple of streams to a stream
can in many cases be ignored, however. Instead, we can take a conceptually simpler,
more traditional view that Logistica is a function that maps a tuple into a value. This
latter view will generally be taken outside of this section. However, precision sometimes
requires one to speak of Logistica in terms of its underlying streams.

A user of Logistica writes a program as a series of definitions and an expression
denoting the function from a tuple of streams to a stream. Multiple definitions for each
symbol are allowed. The expression produces multiple values, each one being an item in
the result stream. The user does not need to explicitly deal with streams, however, since
the stream-handling process is built into Logistica's expression evaluation. We call the



resultant stream a 'control stream'. We do this to avoid confusing it with streams that the
user explicitly creates as data objects. These latter objects we simply call 'streams'.

Control streams are essential for building deduction systems because at any given
point in a deductive process it is usually possible to apply any number of different
deduction steps, each one leading to a different result. Streams capture this notion of
deductive alternatives by allowing each value of the control stream to represent an
alternative deductive result.

Various amounts of control may be exerted over the creation of the control
stream. If no restrictions are placed on the execution, then all possible alternatives are
produced. A branch of the deduction may be eliminated if one of the steps returns
'failure', i.e. the empty stream. Alternatives at a given point which have not yet been tried
may be 'cut' - either explicitly, or by specifying rules to be used to determine when and
what to cut. Cut alternatives will never be executed nor do they contribute to the creation
of the resulting control stream. Specific solutions may be selectively produced by
transforming the control stream into an ordinary stream, i.e., an object that can be directly
manipulated.

A class of potential deduction steps is encoded as a procedure. In addition to
procedures representing total functions abstracted with a list of unique formal parameters,
Logistica allows procedures representing partial functions abstracted with a list of
patterns that control when a procedure applies to a particular tuple of data. These patterns
include variable, literal, list structure, list search (segment variables), and tree search
patterns (schemators). Because some patterns may match in more than one way, the
patterns may contribute to alternative paths of execution. The application of lambda
abstractions is done by pattern-matching of the patterns against the input arguments.

In Logistica arbitrary data structures may be applied to arguments. When the data
structure is not an abstraction, the tuple containing the data structure followed by the
arguments is returned. This allows symbols to function both as procedures and as data
structures at the same time and facilitates symbolic computation ( as noted earlier above).

These features while powerful in themselves, are integrated with the language
Scheme, a popular LISP dialect. This integration gives the programmer a seamless and
natural progression of tools, from the straightforward functional programming approach
of LISP to the powerful and highly-descriptive expression of alternative computations
afforded by Logistica. A brief description of the Scheme-like features of Logistica
follows.

Following ALGOL and Scheme, Logistica is a statically-scoped programming
language. Each use of a variable is associated with a lexically-apparent binding of that
variable. For this reason static scoping is also called lexical scoping.

Logistica has latent as opposed to manifest types. Types are associated with
values rather than with variables. Some authors refer to languages with latent types as
'weakly-typed' or 'dynamically-typed' languages. Other languages with latent types are
Scheme, Dylan, APL, Snobol, and other dialects of LISP. Languages with manifest types
(sometimes referred to as 'strongly-typed' or 'statically-typed' languages) include ALGOL
60, Pascal, and C.

The values of Logistica expressions are called 'objects'. This use of the term
object in this context predates, and should not be confused with, its use in object-oriented
programming languages. All objects created in the course of a Logistica computation,
including procedures and continuations, have unlimited extent. No Logistica object is
ever destroyed. The reason that Logistica does not (usually) run out of storage in memory
is that it reclaims the storage space occupied by an object, if the object cannot possibly
matter to any future computation. This is a more sophisticated form of what is commonly
called 'garbage collection' in most LISP environments. Other languages in which most
objects have unlimited extent include APL, Scheme, Dylan, and other LISP dialects.



Logistica procedures are objects in their own right. Procedures can be created
dynamically, stored in data structures, returned as results of procedures, and so on. Other
languages with these properties include Scheme, Dylan, Common LISP and ML.

Arguments to Logistica procedures are always passed by value, which means that
the actual argument expressions are evaluated before the procedure gains control, whether
the procedure needs the result of the evaluation or not. Scheme, ML, C, and APL are four
other languages that always pass arguments by value. This is distinct from the 'lazy-
evaluation' semantics of Haskell, or the 'call-by-name' semantics of ALGOL 60, where an
argument expression is not evaluated unless its value is needed by the procedure.

In addition to procedures, Logistica has objects called 'macros'. Macros receive
their arguments unevaluated. The environment for macros is taken from the calling
environment, and is augmented with the macro's parameters and local definitions. Like
procedures, macros produce many values. Each value is re-evaluated in the calling
environment. Macros can be used to define new special forms and to simulate normal-
order evaluation.

Logistica's model of arithmetic follows Scheme and is designed to remain as
independent as possible of the particular ways in which numbers are represented within a
computer. In Logistica every integer is a rational number, every rational is a real, and
every real is a complex number. Thus the distinction between integer and real arithmetic,
so important to many programming languages, does not appear in Logistica. In its place
is a distinction between exact arithmetic, which corresponds to the mathematical ideal,
and inexact arithmetic on approximations. As in Common LISP, exact arithmetic is not
limited to integers.

3.4 The Nonmonotonic Rule System: NONMON

NONMON is a set of Logistica rules which implements nonmonotonic reasoning
about actions. Before explaining NONMON, it is important to first explain what
nonmonotonic reasoning is and how this differs from the monotonic reasoning carried out
in classical first-order logic. First-order inference is monotonic: given a set of sentences
A, the inferences that can be drawn from A are a subset of the inferences that can be
drawn from the set W"o', where 0 is a sentence. In contrast to this, nonmonotonic
reasoning allows that inferences that can be drawn from A may not be a subset of the
inferences that can be drawn from A"Y'. Typically, the reason for this lack of
monotonicity is that such systems allow inferences to be made in the presence of
incomplete information. We call such inferences 'default inferences'. For example,
consider the case where: Clyde is a raven, Claire is an albino raven, ravens are normally
black, but albino ravens are not black ravens. Under classical first-order logic with
monotonic inference, we are not allowed to conclude anything about the color of Clyde.
If we allow nonmonotonic inference, then because we know of no other facts to the
contrary, we can conclude that Clyde is black since that is normally the case. If we should
later add the sentence (corresponding to 0) that Clyde is albino, then we are no longer
allowed to conclude that Clyde is black, and, hence, our reasoning method is
nonmonotonic, i.e., Th(A) (z Th(Au(0)) where Th(A) is the set of theorems of A derivable
through classical and nonmonotonic inference.

Classical first-order logic works well for problems in mathematics or in greatly
simplified models of the real world. It does not work well for problems which are too
large or too complicated to completely formalize, nor does it work well for problerims
dealing with change over time, nor for problems where not all information is known, such
as explanation. A number of logical systems have therefore been proposed for carrying
out nonmonotonic reasoning, but most of these proposed solutions lack effective proof
theories (i.e., formal descriptions of their rules of inference represented in a recursive
manner) and are merely semantic descriptions of the 'valid' inferences. Such systems are
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based on carrying out computations over infinite sets of sentences and are completely
computationally intractable. However, we have developed a monotonic theory of
nonmonotonic reasoning which has a recursive proof theory and which has in fact been
implemented as a set of Logistica rules. This theory is our modal logic Z which is a
fragment of second-order modal quantificational logic, involving quantification over
propositions but not over properties. It is a recursively axiomatized logic with a
recursively enumerable set of theorems. It is like classical logic except that it allows one
to express notions of what is possible with respect to a body of evidence. For example, if
K is the theory about Clyde and Raven articulated in the previous paragraph where the
sentence that "Ravens are normally black" is expressed as the modal logic sentence: 'If it
is possible with respect to K for a raven to be black, then that raven is black", then by the
laws of the modal logic Z we can mechanically infer that K entails that Clyde is black.
Likewise, if J is the 2nd theory articulated in the previous paragraph, where it is
essentially K augmented with the additional fact that Clyde is an albino, J will not entail
that Clyde is black.

The reason nonmonotonic reasoning is important for building automated
manufacturing and design systems is that engineers and designers have a deep intuitive
understanding of defaults about the mechanical actions of manufacturing processes, as
well as the mental actions involved in both the design and manufacturing processes.
Thus, if useful automatic aids for design and manufacturing are to be implemented, they
too will need to 'understand' these implicit assumptions. In order to reason about actions,
a set of rules called NONMON has been implemented in Logistica for purposes of
enabling nonmonotonic reasoning about actions. These rules are essentially deriv•,4 rules
of inference of the modal logic Z.

We illustrate below some simple examples of NONMON's ability to reason about
actions. For the readers convenience all the examples are expressed in English. The actual
logical representations used by NONMON are described in a related technical report
entitled, "A Logistica Deduction System for Solving NonMonotonic Reasoning Problems
using the Modal Logic Z' [Brownl993e]. The areas of reasoning include: reasoning about
the future; reasoning about the past; counterfactual reasoning; and reasoning about
concurrent actions.

3.4.1 Reasoning About the Future

Reasoning about the future involves the prediction of the results of carrying out a
sequence of actions starting from some initial situation.

Problem 1. Frame Problem

Assumptions: After an action is performed, things normally remain as they were.
A block is on the table if and only if it is not on the floor.
When the robot grasps a block, the block will be normally in the hand.
When robot moves a block onto the table, the block will be normally on
the table.
Moving a block that is not in the hand is an exception to this rule.
Initially block A is not in the hand.
Initially block A is on the floor.

Conclusions: After the robot grasps block A, waits, and then moves it onto the table,
the block will be on the table.

3.4.2 Reasoning About the Past
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Reasoning about the past involves filling in the missing details or giving a
plausible explanation of what occurred in the past, from an incomplete partial description
of what happened.

Problem 2. Unknown Initial Conditions

Assumptions: After an action is performed, things normally remain as they were.
When the robot grasps a block, the block will be normally in the hand.
When the robot moves a block onto the table, the block will be normally
on the table.
Moving a block that is not on the hand is an exception to this rule.
Initially block A was not on the table.
After the robot moved A onto the table and then waited, A was on the
table.

Conclusion: Initially A was in the hand.

Problem 3. Unknown Actions

Assumptions: After an action is performed, things normally remain as they were.
When the robot grasps a block, the block will be normally in the hand.
When the robot moves a block on to the table, the block will be
normally on the table.
Moving a block that is not in the hand is an exception to this rule.
Initially block A was not on the table.
Initially block A was not in the hand.
After the robot grasped some block and then moved some block onto the
table,
A was on the table.

Conclusions: The block that was grasped was A.
The block that was moved on the table was A.

Problem 4. Actions of Unknown Kinds

Assumptions: After an action is performed, things normally remain as they were.
When the robot grasps a block, the block will be normally in the hand.
When the robot moves a block onto the table, the block will be normally
on the table.
Moving a block that is not in the hand is an exception to this rule.
Initially block A was not on the table.
Initially block A was not in the hand.
After the robot performed two actions, A was on the table.

Conclusions: The first of the two actions was grasping A.
The second of the two actions was moving A onto the table.

Problem 5. Unknown Order of Actions
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Assumptions: After an action is performed, things normally remain as they were.
When a person accepts a job offer from some employer, he will be
employed by that employer.
If Bill is offered a job at Berkeley or at Stanford when he is
unemployed, he will accept it.
Bill is currently unemployed.

Conclusion: After Bill is offered jobs at Berkeley and Stanford at two different
instants of time, he will be employed either by Berkeley or by Stanford.

Problem 6. Unexpected Change

Assumptions: After an action is performed, things normally remain as they were.
When the robot moves a block to another location, the block will be
normally at that location.
After the robot moved a block to Location I and then to Location 2, the
block changed its color.

Conclusion: The block changed its color only once, either after the first move, or
after the second.

Problem 7. Unexpected Absence of Change

Assumptions: When the robot moves a block to another location, the block will be
normally at that location.
After the robot moved block A onto the table, and then moved block B
onto the table, at most one of the blocks A, B was on the table.

Conclusion: After the two actions were performed, exactly one of the blocks A, B
was on the table.

3.4.3 Reasoning About Actions That Might Have Happened: Counterfactual
Reasoning

Counterfactual reasoning is reasoning about what might have been, and usually
takes the form, "suppose that x were to be the case, then y." For this statement to be a
counterfactual conditional, x must be counterfactual, i.e., contrary with the present
situation.

Problem 8. Counterfactual Reasoning about Unexpected Change

Assumptions: After an action is performed, things normally remain as they were.
When the robot moves a block to another location, the block will be
normally at that location.
After the robot moved block A to Location 1, block B changed its color.

Conclusion: Block B would have changed its color if the robot had moved A to
Location 2.

3.4.4 Reasoning About the Future in the Presence of Concurrent Actions

Concurrent actions for our purposes are those actions that occur during the same
transition from one state to the next. At present, there seems to be no completely formal
work on nonmonotonic reasoning about concurrent actions.

Problem 9- Concurrent Actions•



Assumptions: When two actions are performed concurrently, their effects are
normally combined.
When the robot moves a block to another location, the block will
normally be at that location.

Conclusion: After block A is moved to Location I and block B is concurrently moved
to Location 2, A will be at Location I and B will be at Location 2.

Problem 9a. Conflicting Concurrent Actions I

Assumptions: When two actions are performed concurrently, their effects are
normally combined.
When the robot moves a block to another location, the block will
normally be at that location.

Conclusion: After block A is moved to Location I and block A is concurrently moved
to Location 2, either A will be at Location I or A will be at Location 2.

Problem 9b. Conflicting Concurrent Actions II

Assumptions: When two actions are performed concurrently, their effects are
normally combined.
When the robot moves a block to another location, the block will
normally be at that location.

Conclusion: After block A is moved to Location I and block B is concurrently moved
to Location 1, either A will be at Location I or B will be at Location 1.

4. Approach Used to Design and Develop Logistica
As previously mentioned in Section 2., Logistica is a tool used to develop high-

level reasoning systems for manufacturing and management applications. A Logistica
System is thus Logistica plus the high-level rules modeling such reasoning. Thus, our
overall approach used in developing such reasoning systems, was to abstract out the
common reasoning functionality involved in such reasoning and to embed this
functionality into the Logistica language. We then implemented and documented this
language, and tested it on a very wide range of reasoning problems to ensure its
generality and usefulness. The design of the language is described in the Logistica
Reference Manual [Brown93a] and the wide range of reasoning easily expressible in it is
described in the Logistica Programmer's Manual [Brown93d].

There are three main lessons to be learned from the success of this language
development effort. The first lesson is that it is important to abstract out basic reasoning
capabilities and to embed them into the underlying language, as this allows one to avoid
implementing these capabilities over and over again. This capability is precisely what let
us succeed in developing the NONMON nonmonotonic rule systems for reasoning about
actions. Without this capability for quickly implementing such sophisticated reasoning
systems, this project would not have been able to be completed. In other words,
traditional programming methods that did not take advantage of generic or reusable
reasoning rules would have been entirely inadequate from both a technological and
methodological standpoint.

The second lesson we learned was that new programming systems are greatly
enhanced if their syntax and semantics can both be viewed as a logical extension from
p ius elegantly designed systems. As we started the development of Logistica, we
initially used our own LISP-like language for Logistica syntax. However, within a few
months, it became clear to us that Logistica should be based as much as possible on the
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most theoretically elegant dialect of LISP, a dialect known as Scheme. Thus in evaluating
Logistica expressions, even though expressions may have multiple values in Logistica
they look like the single-valued expressions of Scheme. Likewise the pattern-matching
capabilities of Logistica are implemented as patterns in the formal parameter list of a
function and are an extension of what is normally allowed there. Because Logistica looks
like the well-known Scheme dialect of LISP (even though it is much more sophisticated
semantically), this facilitates its acceptance by scientists and engineers because they do
not have to learn an entirely new language that does many of the same things as
languages they already know do. They essentially have only to learn the differences
which make Logistica more expressive and more general.

The third lesson learned is that our users find significant value both in Logistica
itself and in the ideas and technologies inherent in Logistica. For example, even though
Allied Signal has purchased the Logistica system with its nonmonotonic rule system
NONMON for dealing with reasoning about actions, it has also found significant use for
using Logistica as an implementation language for major aspects of its manufacturing
solid modeling reasoning. This application is independent of the NONMON rule system.
Likewise, Ontek has found that the deduction technology of Logistica itself is useful to
handle a number of system problems in their knowledge representation system. These
applications of Logistica are described in the next section.

5. Applications of Logistica
During the course of this project Logistica was applied in two

industrial/commercial settings. One application was at Ontek Corporation as part of the
development of its PACIS software system and the other was at the DOE's Kansas City
Plant run by Allied Signal Aerospace as part of its engineering and manufacturing
operations. These applications of Logistica are described in sections 5.2 and 5.3,
respectively. Section 5.1 describes the overall objectives and criteria for applying
Logistica under this project.

5.1 Objectives and Criteria for Application of Logistica

The purpose of applying Logistica under this Phase II SBIR project was to
establish a 'proof of principle'. For this reason we picked two very different applications:
one as an embedded theorem prover to support a very general, very powerful enterprise
information integration platform under development as part of another Air Force
ManTech program; and one to directly support representation of complex end-user rules
in a real-world manufacturing engineering domain (namely process planning). The latter
demonstration project was chosen because Integrated Product Process Development
(IPPD)/Concurrent Engineering (CE) is becoming a critical productivity-enhancing
approach in a number of commercial and aerospace/defense industries. IPPD/CE requires
sophisticated tools to support description of the information entities, processes and
business rules used by an enterprise in the course of designing, manufacturing and
supporting its products. Logistica lends itself to the description of such business rules,
and to the use of such descriptions by automated reasoning systems to support decision-
making in the enterprise. These two applications are described respectively in sections 5.2
and 5.3.

5.2 Application to Ontek's PACIS Under ITKM CDIT

$.2.1 Technical Requirements for PACIS under ITKM CDIT
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Under the ITKM CDIT project, Ontek has identified end-user needs and
requirements for production-viable Integration Toolkits and Methods - Corporate Data
Integration Tools (ITKM CDIT). These tools essentially comprise an enterprise
information integration platform based on the ANSIISO Three-Schema [Database
Management] Architecture (i.e., using external, conceptual and internal schemas) [ISO,
1987; Tsichritzis and Klug, 1978]. The technology is being operationalized using Ontek
Corporation's Platform for the Automated Construction of Intelligent Systems (PACIS).
'Production viable' means that ITKM CDIT technologies must meet or exceed the
performance capabilities of existing technologies and be sustainable in large-scale,
heterogeneous information resource environments. Performance and sustainability
comprise the two primary end-user or 'enterprise business-level' requirements.

Requirements for performance deal both with the local performance of the ITKM
CDIT toolkit and its ability to optimize the performance of the foreign systems with
which it must interact. Several sustainability requirements address the subsumptive
integration of commercial database management systems (DBMSs) and their associated
databases. Included are requirements for compatibility with existing computing
environments, as well as functional capabilities to support direct, dynamic, and ad-hoc
access and update from the PACIS platform to data stored in commercially-available
DBMSs. Examples of such database management systems include IBM's IMS and DB2,
and Oracle Corporation's ORACLE. Object-oriented DBMSs are also being utilized in an
increasing number of production DBMS environments, and this trend is expected to
ramp-up dramatically. The access capability must therefore be applicable to
heterogeneous environments that run the gamut from 'flat' file management systems,
through traditional hierarchical, network and relational DBMSs, to emerging object-
oriented DBMSs. This access should be user transparent - i.e., end-users should not
have to have any knowledge of the location of the data or the underlying systems that
manage the databases. The toolkit mnst also do more than simply access the data in
existing DBMS environments; an enterprise information integration platform must be
able to dynamically interact or interoperate with those legacy systems. This includes the
requirement to perform and propagate updates across a network of distributed, but
integrated, systems. Other performance and sustainability requirements deal with the
toolkit itself, in particular the need for the individual components or tools to be tightly
integrated so that from a user standpoint, the tools can be viewed simply as elements of a
complete suite of tools or a unified toolkit.

Based on these two end-user requirements for performance and sustainability at
the 'enterprise business level', Ontek then identified detailed 5 technical requirements at
the 'technology level'.

1. One key technology-level requirement is for Reference Mediation. Reference
mediation is important for optimizing performance, by enabling the selection of
different access methods depending on the nature of the data being accessed and
the data management environment in which it resides. This is especially critical in
large-scale database environments, like one would expect to find in integrated
enterprises.

2. A second technology-level requirement is the capability to compile a single
PACIS operation, such as an end-user query, into a complex or collection of
subqueries expressed in the particular DBMS data manipulation languages
(DMLs) of the various databases targeted by the query. This capability is critical
for direct, transparent, dynamic, ad-hoc access to distributed, heterogeneous
databases to be viable in a large-scale production environment - i.e., it is critical
for performance. Examples of DMLs are DL/I for the IMS DBMS, and SQL for
the ORACLE and DB2 DBMSs. The compiled DMLs must also be tailored to the
specific computing environments (e.g., MVS/CICS, UNIX, etc.) in which the



DBMSs reside. The compiled subqueries can then be distributed to, stored in, and
executed on the machines containing the target databases.

3. A third important technology-level requirement can be referred to as Global
Instantiation - for sustainability, the toolkit must be able to create instances (i.e.,
new records) in systems external to the PACIS-based data/knowledgebase,
including systems in the enterprise's existing information resources environment.

4. A fourth technology-level requirement, mandated by the end-user requirement
for sustainability, is the existence of a Global Condition Handling mechanism to
automatically propagate the consequences of events occurring in one area of the
system across other system elements for which these events have consequences.

5. The fifth major technology requirement, is for Global Presentation. This
capability will enable the various ITKM CDIT technologies to operate as a single
logical toolkit comprised of an underlying platform (i.e., PACIS) supporting
multiple functional tools which provide various interrelated services such as:
conceptual analysis and modeling; enterprise model integration; legacy database
query, update and integration, etc. Tool integration imposes more detailed
requirements on the use of the baseline PACIS representation system, and drives
the requirement for a new global environment to support common, unified
graphical user interfaces (GUIs).

The five key technical requirements described in the previous section, particularly
the compiler, the global instantiation capability and the global condition handling
capability, drive a sixth important technical requirement - the need for the ITKM CDIT
toolkit to perform Pattern-Directed Invocation. Like the other five, this requirement is
also necessary to meet the enterprise business-level requirements. However, the first five
technical requirements may be considered 'vertical' requirements that address specialized
areas. There are some inter-relationships among them, but they can be thought of as
fundamentally distinct. The sixth requirement, on the other hand, is a 'horizontal'
requirement, which, while addressing distinct functional capabilities, serves to enable or
support the capabilities of the other five technical requirements. This can be explained in
more detail as follows:

6. The sixth technology-level requirement is for a functional capability to
perform Pattern-Directed Invocation. The problems of scope, complexity,
sustainability and performance that information integration raises requires new
techniques for basic system operations such as compilation, condition handling,
instantiation and process invocation. The melding of database operations -
particularly instantiation - and traditional programming operations requires
pattern-directed invocation. As noted earlier, a compiler, a global instantiation
facility and a global condition handling facility are necessary to provide the
performance and sustainability required by day-to-day system operations in a
large-scale, integrated information environment. Even the construction of a
compiler for PACIS, as well as the creation of both a global instantiation facility
and a global condition handling facility, entail that PACIS support pattern-
directed invocation. The compiler requires pattern-directed invocation because the
language translation job is just too complicated to try building it using purely
deterministic methods. The global instantiation facility and the global condition
handling facility require pattern-directed invocation because they must have the
ability to invoke routines based on the current state of the system, rather than
based on a previously-defined calling sequence.
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Two lower-level technical requirements, which represent further refinements of
the overall requirement to support pattern-directed invocation, have also been identified.
Existin# pattern-based languages such as PROLOG and ML allow for pattern-directed
invocation, but with certain limitations. These limitations must be overcome in order to
meet other ITKM CDIT requirements for a compiler, a global instantiation capability and
a global condition handling capability. The additional requirements described below are
based partly on overcoming the limitations of existing pattern-based languages.

1. Alow multiple matches on operations and definitions. The PACIS compiler
requires this capability because there may be many possible target code solutions
to any one query, and deciding which one is best for the purpose at-hand requires
having them all available at the same time for comparison. A condition
mechanism requires this because there is more than one possible action, or
condition handler, that may be invoked during a fault in a three-schema database
transaction. For example, you might have to do both a DB2 image rollback and an
IMS checkpoint/restart.

2. Support dynamically-definable interpreter control structures - This will be a
critical capability in the ITKM CDIT environment, since the dynamic semantics
of other systems must be subsumed to support their integration. The subsumption
of dynamic semantics includes representing and eventually executing the control
structres these disparate systems use. These systems may well have different
meanings for the same control structure named in another system. This puts the
burden on the PACIS interpreter to carry multiple definitions of control structures.

S.3.2 How Logistics Meets rrKM CD1T Technical Requirements

Logistica helps meet the ITKM CDIT technical requirements by providing a
working system which satisfies the pattern-directed invocation requirements described
above in Section 5.3.1. Use of Logistica in this 'proof of principle' setting has indicated
that these difficult requirements can be satisfied to a sufficient degree, and has helped
demonstrate specifically how one might go about implementing this capability in a
production version of an enterprise information integration system.

A copy of the Logistica system was delivered to, and installed at, Ontek. Ontek
programmers then studied the Logistica system and determined that this technology
appeared to be able to satisfy many of the requirements for a pattern-directed invocation
capability. AIR worked with Ontek staff to help them understand the basic ideas behind
Logistica and to explore possible ways to embed Logistica's pattern-directed invocation
capability within Ontek's C-based PACIS knowledge representation product. Ontek is
currently planning to reimplement various Logistica functionality in C as part of PACIS.
AIR will be provided a royalty or other similar compensation from the sale or lease of
PAIS software incorporating Logistica's pattern-directed invocation capability.

Two specific examples of how Logistica meets the required pattern-directed
invocation requirements of PACIS are described below:

1. The Queens example described in Section 3.1 demonstrates that Logistica
provides for multiple matches on both operations and data as required for the
PACIS condition handler. Logistica provides explicit support for multiple
matches on operation definitions and multiple input states. A given input to a
pattern-directed interpreter may possibly match: none; exactly one; or many
operation definitions. Also, a given input operation may have: no arguments;
exactly one set of arguments (one input state); or many sets of arguments (many
input states). The power of a pattern-directed invocation mechanism depends on
how it handles the possible operation matches and their application to the possible



number of input states. Of the existing pattern-based languages such as ML and
PROLOG, Logistica is the ny o=e that can handle all of the possible cases of
operation matches and input states. In ML, for instance, even if there are several
operation definitions which match the input pattern, only the first match will be
returned. This means that ML can only execute one of possibly many definitions
for a given operation. PROLOG does return matches of multiple operation
definitions, but whether one or many operations are returned, they are applied to
only one input state. In the case where there are many operation definition
matches, as well as multiple input states, Logistica invokes the Cartesian cross-
product of 'operation definitions X input states'.

2. The propositional deduction system illustrates that Logistica supports
dynamically-definable interpreter control structures as is required for the
subsumptive requirements of PACIS. Thus Logistica provides dynamically-
definable interpreter control structures whereas older languages, such as
PROLOG, 'wire down' the basic syntactic control structures they use. In other
words, the control structures of these other languages are static. Symbols such as
'and' are primitive and have only one definition. In Logistica, even these basic
control structures can themselves be defined. In addition, since Logistica allows
for multiple definitions of operations, the control structures can be multiply-
defined.

In summary, Logistica has provided Ontek with the basis for its required pattern-
directed invocation capability. That capability can now be operationalized in PACIS and
used for ITKM CDIT technologies. This is one of the most important requirements of
Ontek's 1TKM CDIT project, as this requirement is a basic enabling requirement for the 5
other technological requirements of the project.

In early 1994, Ontek's technologies (which include logic based on the Logistica
technology) will be ready for demonstration. Ontek eventually plans to commercially
market products based on ITKM CDlT technology.

5.3 Deployment into Allied Signal

Logistica has been deployed (i.e., sold, installed, implemented and put into
operation) for Allied Signal Aerospace at the Department of Energy's (DOE's) Kansas
City Plant. The business transaction took the form of a sale of 1 copy of Logistica
running on a SUN SPARCstation, and the sale of 1 copy of the nonmonotonic rule
system, NONMON. The nonmonotonic rule system was implemented in Logistica and
makes use of its pattern-directed invocation capability and its ability to represent multiple
values. This nonmonotonic reasoning capability was critically needed by Allied Signal
for developing an automated manufacturing system.

Although Allied Signal originally purchased Logistica, as well as the NONMON
nonmonotonic rule set written in Logistica, for use in understanding and representing the
results of mechanical manufacturing actions and mental actions involved in the design
process, Allied Signal subsequently discovered that Logistica itself (without the
NONMON rule set ) is a very useful language for implementing translation processes,
and for verifying design constraints and consistency. In fact, they have found Logistica to
be so useful that one development group is considering rewriting substantial parts of their
existing manufacturing system in the Logistica language. The decision to consider this
further use of Logistica was made despite Allied Signal's considerable past investment
and experience in other, less powerful languages. It was felt that Logistica offered the
potential of providing much needed system capabilities which could not be
operationalized (or at least not as efficiently and cost-effectively) using existing



technologies. These applications of Logistica without NONMON are briefly described in
Sections 5.3.1 and 5.3.2 below. The originally-envisioned project, a longer-term
application of Logistica coupled with NONMON, is described in Section 5.3.3 below.

S.3.1 Machining Form Feature Translation Project

Under the National Initiative for Product Data Exchange (i.e., NIPDE), the DOE's
Kansas City Plant run by Allied Signal is currently working with a number of other
companies to create a single unified model of machining form features. This work is
being carried out in anticipation of creating new STEP (Standard for The Exchange of
Product model data) application protocols in the area of form features such as pockets,
holes, slots, bends, and chamfers. The application protocols take the form of 'context-
driven integrated model' (CDIM) specifications. The basic idea is to have a company
create product designs which are represented in a standard way, so that they can be
transmitted to and used by other companies such as subcontractors, vendors, customers or
support organizations. This work involves the following two steps:

1. First, the Navy RAMP Product Translation System (i.e., RPTS) project at
the South Carolina Research Authority (SCRA) and Grumman Data Systems is
providing a source of machining form feature files expressed as RAMP CDIM
specifications. These files are initially created by using the Pro-engineer feature-
based solid modeling system with a form feature-based editor. The files are then
translated to the RAMP CDIM language. Because RAMP CDIM is already
supporting significant applications downstream in the design, manufacturing and
support processes, it offers a valuable source of data for NIPDE.

2. Second, although RAMP CDIM is currently supporting downstream
applications, it is effectively still a 'closed system', rather than a consensus model
produced and agreed upon by a wide-range of companies. It is therefore not
acceptable to many companies as a 'standard' format for exchanging form feature
data. Fortunately, there is a consensus model for product data exchange using the
STEP standard that is acceptable to a wide range of companies, namely NIPDE.
Numerous companies and groups have agreed to accept NIPDE CDIM product
specifications and to use them for manufacturing applications that use form
features. These applications include process planning, generative inspection, and
costing. The companies and groups that have agreed to use NIPDE specifications
for this purpose include: the National Center for Manufacturing Sciences
(NCMS), Pratt & Whitney, Ford Motor Company, Martin Marietta, Lawrence
Livermore National Laboratory, Cognition Systems, and Techno-Soft (a company
spawned as a result of the Air Force rapid design system program).

The missing link between the first and second steps is that the available product
data is expressed early in the process in RAMPS CDIM format, whereas the companies
downstream want the data to be expressed in NIPDE CDIM format. Allied Signal has
taken on the task of translating the RAMPS CDIM into the NIPDE CDIM language. In
order to do this, they need an advanced reasoning technology that allows translation rules
to be easily expressed in a modular way. Since Logistica provides this capability, Allied
Signal decided to undertake a project to write the necessary translation rules in the
Logistica language. They are also using the Logistica system to execute these rules (i.e.,
to process through the rules with data, in the same manner as traditional computer
programs are typically executed). Logistica is therefore crucial to the success of the
machining form feature translation project, as every piece of product data in every test
file will be manipulated and translated by the Logistica rule system.



5.3.2 The Ford Project

Allied Signal is currently involved in negotiating a cooperative agreement with
DOE and Ford Motor Company. The agreement covers a multi-year, multi-million dollar
project to implement a STEP repository at Ford. Allied Signal is proposing to use
Logistica on this pending project to check reasoning about Euler constraints to insuring
consistent geometry, and to do inference on product designs.

5.3.3 Longer-Term Plans

Together, Logistica and the nonmonotonic rule set NONMON provide Allied
Signal with a unique capability for reasoning about the consequences of action, in
general. The longer-term plans for use of Logistica at Allied Signal involve building a
rule base for the domain of process planning for manufactured parts. The rule base will
include descriptions of various actions, both planned and unplanned, which can occur in
that domain. Using that rule base, along with the generic reasoning rules of NONMON,
Logistica would be used to support planning and decision-making activities.

6. Conclusion
Logistica is a functional programming language used for implementing deductive

reasoning processes, specifically for modeling and executing the logic or rules of
processes or actions in some domain of interest. Logistica provides more generality than
other languages of this nature, and is therefore more powerful and flexible in its
application. It is particularly useful for cases where there are multiple input states to be
studied, or where there are several alternative procesing paths to be considered.
Logistica is extremely useful in cases where the possible states or processing paths are
not known or predictable in advance (i.e., where the states or processes are
'indeterminate').

Automating reasoning processes is important for developing 'smart' systems to
support analysis and decision-making in complex enterprises. Logistica is intended to be
used to describe the logic or rules of domains such as engineering and manufacturing
operations, as well as their supporting management or business-level processes. Under
this Phase II SBIR, the Logistica language was refined and then opetationalized in a
software tool. The software was developed and tested in a LISP processing environment,
running on workstations under the UNIX operating system and on Apple Macintosh
personal computers. Two applications of the technology were undertaken to establish a
'proof of principle' of Logistica's capabilities.

First, Logistica was used as the basis for designing a pattern-directed invocation
capability for Ontek Corporation's Platform for the Automated Construction of Intelligent
Systems (PACIS) software. This work was performed under the Air Force ManTech
Directorate's Integration Toolkit and Methods (ITKM) program, Corporate Data
Integration Tools (CDIT) project. Logistica was determined to be a quite suitable
technology for supporting a pattern-directed invocation capability. Logistica is serving as
an important technological basis for meeting many of the 'horizontal' technical
requirements of ITKM CDIT - i.e., fundamental requirements which serve to support
'vertical' or specialized capabilities in specific technical areas.

Secondly, Logistica and its associated NONMON rule set have been successfully
deployed into a major manufacturing enterprise - the DOE's Kansas City Plant run by
Allied Signal. NONMON is a set of Logistica rules which implements nonmonotonic
reasoning about actions. At Allied Signal, Logistica has been utilized on a major project
involving translation between disparate product model data specification formats. Other
uses are being planned or proposed include using Logistica rules as part of a STEP



repository and as the basis for a system for reasoning about manufacturing actions,
initially in the domain of manufacturing process planning.

In summary, this SBIR Phase 11 contract demonstrated the use of Logistica as a
solution to several classes of real problems in information system and manufacturing
environments. Phase III is intended to be the commercial deployment of this product
either alone or as a part of a more general management and manufacturing system.
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